

Verification and Validation of Autonomous Systems

S. Fratini, P. Fleith, N. Policella (SOLENIX) A. Griggio, S. Tonetta, S. Goyal, T. Hoa, J. Kimblad, C. Tian (FBK) K. Kapellos, C. Tranoris (TRA)

ASTRA 2023 – ESA/ESTEC

Study Overview

"to propose and demonstrate a generic Verification and Validation methodology based on the usage of the System-level Simulation Facilities, specifically targeted at autonomous systems using AI-models"

Focus	Problem	Approach	Expected Outcome
System level V&V of autonomous systems integrating AI/ML components	AI/ML approach very effective for implementing autonomy, but not suitable "as- is" for mission- critical systems	Define a Generic Quality Framework for AI/ML models and a Verification & Validation Methodology based on System-Level Simulation Facilities	 Quality Framework Generic V&V Methodology Demonstrator on relevant use case
3 VIVAS – ASTRA 2	023		

Consortium

Plan

- VIVAS Framework
- Proof of concept use case
- VIVAS Architecture components / instantiation for the POC
- VIVAS Framework and MLOps
- Deployment
- Conclusions and recommendations

The VIVAS Framework

5 / 40 19/10/2023 VIVAS – ASTRA 2023

VIVAS Framework

- Formal symbolic model of the autonomous system and of the properties to be tested
- . Abstract scenario & monitors generation
- II. Concrete scenarios generation
- III. System level simulation of the concrete scenarios and execution traces generation
- IV. Monitoring of the execution traces and generation of V&V results
- The analysis of the results confirms the validity of the AI/ML models or improvement is required

Proof Of Concept

ExoMars mission: subsurface sampling

- Extended to introduce AI components and ML models
 - **On-board activity planner** (AIPlan4EU / ROBDT)
 - ML model estimating the 'warm-up' duration of external mechanisms (ROBDT)
 - ML model for novelty detection from images (opportunistic science developed in the VIVAS activity)

VIVAS Framework – Abstract Scenario Generation

VIVAS – ASTRA 2023

8/40

19/10/2023

- Formal symbolic model of the system
 - Environment model
 - System under test (including the AI/ML parts)
- Written as a symbolic transition system in the SMV language of the nuXmv model checker
- The Formal Properties represent the formalization of the system-level requirements of interest, specified as linear temporal logic (LTL) formulas
 - The nuXmv model checker computes the execution trace witnessing the realization of the abstract scenario of interest

VIVAS Framework – Abstract Scenario Generation

- POC Use Case
 - Environment abstract model: type of terrain, position of the rover in a grid, season and time in the day, areas of interest, temperatures, fluxes (*environment.smv*)
 - Autonomous System model
 - Planning model: models the autonomous system at the logical level of mission activities (*planner.smv*)
 - Model for estimating resources consumption (estimator.smv)
 - Formal properties (scenario.smv)
 - Goals achieved in the available resources
 - The objects of interest (novelty) are detected
 - Decisions to analyze the objects of interest do not preclude the achievement of the mission goals

VIVAS Architectural Design – Concrete Scenario Generation

- Each trace produced by the model checker (abstract scenario) is refined into a set of concrete scenarios
- Mapping from abstract variables to parameter ranges and probability distributions
- Ensures adequate level of coverage at abstract level (e.g., coverage of the abstract scenarios wrt. the set of properties, coverage of the properties wrt. the model)
- POC Use Case:
 - Goals request
 - Initial state of the environment (e.g., positions of the objects of interest) and the system (state of the different subsystems)
 - Evolution of temperatures and fluxes

VIVAS Architectural Design – Simulator

- The Autonomous System simulator includes the AI/ML components under test
- Simulates the concrete scenario under the requested conditions
- Generates the execution trace
- POC Use Case: Extension of the 3DROV simulator including the AI/ML models and o/b planner
 - Concrete scenario:
 - Goals
 - Initial System state
 - Environmental information: location of the objects of interest, temperatures, fluxes, ...
 - Execution trace
 - State of all subsystems
 - Executed Activities
 - Reports

VIVAS Architectural Design – Execution monitor

- Monitor generator
 - Synthesis of the monitor from the system-level property of interest and the abstract system model
- Monitor executor
 - Analysis of the traces produced by the simulator to check the properties and determine the overall coverage
 - Results saved in a database
- POC use case:
 - The requested Goals are achieved within the available resources
 - The novel objects are detected
 - The simulated trace complies with the abstract scenario

Test Results

- For each test case, 4 possible outcomes:
 - **Property satisfied:**
 - Scenario constraints satisfied: **OK**, test works as expected
 - Scenario constraints violated: WARNING, problem with coverage
 - Property violated:
 - Scenario constraints satisfied: KO, found problematic scenario
 - Scenario constraints violated: WARNING, found unexpected problematic scenario

VIVAS Framework – User Interaction Summary

14 / 40 19/10/2023 VIVAS – ASTRA 2023

VIVAS Framework Interface with Model Development Life-Cycle

Deployment

- VIVAS is deployed in 6 docker containers:
 - VIVAS-Framework
 - Planning Technology:
 - WIA Planner
 - RaaS Service
 - DHS Model
 - 3DROV Simulator
 - Novelty Detection Model
- Shared folder for I/O
- Python script to launch tests

Conclusions

17 / 40 19/10/2023 VIVAS – ASTRA 2023

Achievements

- Demonstrated the feasibility of a model-based approach to system-level validation and verification of autonomous systems integrating AI/ML components
- Implemented the VIVAS Framework, a general, domain independent support for qualification of AI/ML in operation, leveraging the rigorousness provided by the model checking approach
- The test cases have been deployed using 3DROV and ROBDT, ESA technologies for autonomous planetary robotic assets
- For information, contact Quirien.Wijnands@esa.int

18 / 40 10/10/2023 VIVAS – ASTRA 2023

Recommendations

- Consider a follow-up:
 - To analyze the results of VIVAS runs providing more detailed insights on tests results
 - To integrate VIVAS in an MLOps loops for ML models qualification
- Investigate the customization of VIVAS in various scenarios:
 - Robotic assets
 - Autonomous Platforms for EO
- Consider the possible integration of VIVAS as a building block for future deployments like:
 - The DT (digital twin) infrastructure
 - ExoMars ground rover control infrastructure

19 / 40 10/10/2023 VIVAS – ASTRA 2023

Solenix Engineering GmbH Spreestrasse 3 64295 Darmstadt Germany

